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ABSTRACT

Hashing techniques with asymmetric schemes (e.g., only bi-

narizing the database points) have recently attracted wide

attention in the circle of image retrieval. In comparison with

those methods which binarize simultaneously both of the

query and database points, they not only enjoy the storage

and search efficiencies, but also provide higher accuracy.

Gearing to this line, this paper proposes a metric-embedded

asymmetric hashing (MEAH) that learns jointly a bilinear

similarity measure and binary codes of database points in

an unsupervised manner. Technically, the learned similar-

ity measure is able to bridge the gap between the binary

codes and the real-valued codes, which are represented pos-

sibly with different dimensions. What is more, this measure

is capable of preserving the global structure hidden in the

database. Extensive experiments on two public image bench-

marks demonstrate the superiority of our approach over the

several state-of-the-art unsupervised hashing methods.

Index Terms— Unsupervised hashing, asymmetric hash-

ing, bilinear similarity measure

1. INTRODUCTION

Similarity search aims to find some items whose distances are

smallest to a given query item, also known as nearest neigh-

bor search [1, 2]. Technically, similarity search is a funda-

mental task in some real-world applications such as image

retrieval [3, 4]. However, measuring the similarity between

high-dimensional data points is costly in large scale datasets.

To address it, various hashing techniques [5, 6, 7, 8, 9] have

been developed, which encode high-dimensional data points

into compact binary ones while preserving the similarity in

the original space. Based on these binary codes, the similari-

ty can be calculated with low computation and memory costs.

In general, hashing methods can be divided into symmet-

ric hashing and asymmetric hashing according to the encod-

ing schemes of the query and database. For symmetric hash-

ing, both of the query and database are embedded into bina-

ry codes by the same hash function [6, 7, 8, 10, 11, 12]. For

asymmetric hashing, different strategies are utilized to encode

the query and database [13, 14, 15, 16, 17]. In practice, the

tricks with asymmetric hashing have been proven to help im-

prove the performance of retrieval [13].

Among the existing asymmetric hashing methods, there

are several types of asymmetric structures. Typically, in

SDH [15] and COSDISH [16], explicit hash functions are

learned for query, while the binary database points can be

directly obtained unrelated to this hash function in training

stage. Neyshabur et al. [13] learned two distinct hash func-

tions to generate binary codes and demonstrated the power of

asymmetry theoretically and experimentally. All the above

methods are using binary codes of the query and database.

However, Gordo et al. [18] argued that binarizing the database

points without the query can provide higher accuracy and also

enjoy the storage and search efficiencies. For this reason, two

asymmetric distances are proposed to measure the similarities

between the real-valued codes and binary codes in [18].

Inspired by the above-mentioned asymmetric schemes,

we adopt the real-valued query and two distinct hash func-

tions [13, 14]. Among them, two distinct hash functions

are employed to generate the real-valued and binary codes,

respectively. Since real-valued and binary codes belong to

different distribution spaces, it may be inappropriate to di-

rectly compute the similarities between asymmetric codes via

commonly used distance functions, e.g., Euclidean distance.

Accordingly, a bilinear similarity measure is presented to

achieve this goal. With the learned bilinear similarity mea-

sure, the gap between the binary and real-valued codes can

be bridged. Meanwhile, we minimize the fitting error be-

tween the learned similarities and the affinities measured in

a dimension-reduced space. As such, the global structure in

the database can also be preserved.

In consideration of the difficulty in gaining semantic la-

bels in practical applications [6, 8, 10, 19, 20, 21, 22], our

approach is learned in an unsupervised manner. Extensive ex-

perimental results demonstrate that our approach outperforms

the state-of-the-art methods.

2. METRIC EMBEDDED ASYMMETRIC HASHING

2.1. Problem formulation

Given N data points X = [x1, . . . ,xN ] ∈ R
D×N , where

xi, i = 1, ..., N is a D-dimensional vector. In our approach,

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on September 18,2021 at 01:01:41 UTC from IEEE Xplore.  Restrictions apply. 



each data point x ∈ R
D×1 (subscript omitted) is further trans-

formed to a binary code and a real-valued code. For the binary

code, a binary hash function g(x) = sign (WTx) is learned

to embed x into K-bits binary code b ∈ {−1, 1}K×1, where

W ∈ R
D×K is a projection matrix. As for the real-valued

code, we apply a dimension reduction method on x to gener-

ate the real-valued code x̃ ∈ R
L×1, L < D. Accordingly, x

will be mapped into L-dimensional real-valued codes by the

embedding function h(x) = VTx, where V ∈ R
D×L is a

projection matrix 1 . Note that since a real-valued code con-

veys more information than a binary one with the same length,

the optimal dimension of x̃ (dimension-reduced x) will not be

higher than that of b, i.e., L ≤ K.

Furthermore, the similarity between two data points in

the original space should be preserved in terms of the learned

corresponding binary codes and real-valued codes. Although

the similarity in the original space can be defined by many

distance functions (e.g., Euclidean distance, cosine distance),

directly utilizing these distance functions to compute the sim-

ilarity between data points by using binary and real-valued

codes is nontrivial. This is due to the fact the asymmetry

codes often follow two data distributions and even their di-

mensions may be different, e.g.,L < K. To address these

issues, we exploit a parametric similarity function with a

bilinear form [25] to measure the similarity between the

asymmetric codes. To be specific, this function is denoted by

s(xi,xj) = h(xi)
TMg(xj), where M ∈ R

L×K is a matrix

that aims to parameterize the bilinear similarity measure. To

preserve the global structure in the original space, we mini-

mizing the fitting error, defined by the following function:

min
W,M

N∑
i,j=1

(s(xi,xj)−Aij)
2. (1)

Where Aij is the affinity between xi and xj in the original

space. As stated in [25, 26], when there is sufficient training

data, the matrix M is not strictly required to be positive semi-

definite or symmetric. Considering that our approach is an

asymmetric hashing and the bilinear similarity measure (also

a metric) s(xi,xj) is learned to fit the affinity matrix A in the

original space, we name our approach as Metric Embedded

Asymmetric Hashing (MEAH).

In this paper, there is no supervised information to reveal

the semantic similarity. Alternatively, we adopt the common-

ly used unsupervised metric denoted by Aij = e−
‖xi−xj‖2F

σ ∈
(0, 1], where σ is a parameter and σ > 0. Unfortunately,

computing all pairwise affinities in A ∈ R
N×N between da-

ta points of X is extremely time-consuming in large scale

datasets. Therefore, we compute an approximation of A by a

product of two smaller matrices [10]. In addition, on the ba-

sis of chunklets (generated by k-means), relevant component

1The projection matrix V can be learned by any dimension reduction

methods, e.g., (Relevant Component Analysis, RCA) [23, 24], (Principal

Component Analysis, PCA). In this paper, we choose RCA.

analysis (RCA) can learn a discriminant projection space and

unravel the inherent structure of the data [23, 24]. Then, based

on the RCA-reduced data points X̃, the affinity matrix A can

be approximated by P (X̃)TQ(X̃) defined by:

P (x̃) = [

√
e2 − 1

eσ
e−

‖x̃‖2F
σ x̃;

√
e2 + 1

2e
e−

‖x̃‖2F
σ ], (2)

Q(x̃) = [

√
e2 − 1

eσ
e−

‖x̃‖2F
σ x̃;

√
e2 + 1

2e
e−

‖x̃‖2F
σ ]. (3)

With this approximation, we can avoid the O(N2) computa-

tion complexity when calculating the affinity matrix A.

Technically, with (2) and (3) the objective function (1) can

be further reformulated as follows:

min
W,M

‖X̃TMsign (WTX)− P (X̃)TQ(X̃)‖2F . (4)

Where X̃ = VTX and ‖ · ‖F is the Frobenius norm. Ob-

viously, because of the discrete sign function, it is difficult to

solve the above problem (generally NP hard). In order to re-

move the sign function, a common and effective strategy is to

incorporate a regulation [15]. Then, we rewrite the objective

function (4) as

min
W,M,B

‖X̃TMB− P (X̃)TQ(X̃)‖2F
+ λ‖WTX−B‖2F

s.t. B ∈ {−1, 1}K×N ,

(5)

where λ is a penalty parameter, balancing the fitting error and

the quantization loss. The first term in (5) is a fitting error. By

minimizing the fitting error, we can learn a bilinear similarity

measure (parameterized by M) to reveal the global structure

among the database. Meanwhile, the second term in (5) is

employed to the guarantee that the hash function is able to

learn binary codes with the minimum quantization loss.

In testing, we can calculate the similarities between one

query and all data points by (VTq)TMB, where q ∈ R
D×1

is a given query. In this way, the retrieval results are returned

by sorting these similarities.

2.2. Optimization

Note that problem (5) is a non-convex problem with W,M,B
together. Accordingly, we choose to solve W, M and B in an

alternating fashion, i.e., optimize one variable while keeping

the others fixed at each time.

In practice, we initialize the variables (V,B,M) at the

beginning. Specifically, V is obtained by performing RCA

on the original data points X. Binary codes B is initialized

by ITQ [6]. And the matrix M is initialized with ones on the

main diagonal and zeros elsewhere.

W-Step. When M and B are fixed, the problem (5) is a

least-square regression problem. Thus, the matrix W has a

closed-form solution:

W = (XXT )−1XBT . (6)
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B-Step. With W and M fixed, the problem (5) is refor-

mulated as

min
B

‖RTB‖2F − 2Tr (BTZ)

s.t. B ∈ {−1, 1}K×N ,
(7)

where R = MT X̃, Z = RÂ+ λWTX, Â = P (X̃)TQ(X̃)
and Tr (·) is the trace norm. Obviously, solving the problem

(7) is nontrivial, due to the discrete constraints. However, as

mentioned in SDH [15], the single row of B has a closed-

form solution with other rows fixed. Based on this idea, we

circularly update B row by row. That is to say, we update

only one bit for all training samples with other bits fixed each

time. Specifically, the binary codes B are learned by discrete

cyclic coordinate descent method. Suppose that bT is one

row of B, and the remaining rows of B is represented as B′.
In a similar way, we suppose that rT , zT is one row of R, Z
corresponding to bT . R′ and Z′ are the matrix of R and Z
except rT and zT , respectively.

Therefore, we obtain the following problem w.r.t. b :

min
b

(rTR′TB′ − zT )b

s.t. b ∈ {−1, 1}.
(8)

Clearly, this problem has a closed-form solution:

b = sign (z−B′TR′r). (9)

M-Step. We update M with W and B fixed. Similar to

W step, the problem (5) turns out be a least-square regression

problem, and the matrix M has a closed-form solution

M = (X̃X̃T )−1(X̃ÂBT )(BBT )−1. (10)

The proposed Metric Embedded Asymmetric Hashing

(MEAH) is summarized in Algorithm 1.

Algorithm 1 Metric Embedded Asymmetric Hashing

Input: Training data points X ∈ R
D×N ; the length of bina-

ry codes K; the length of real-valued codes L; maximum

iteration number t; penalty parameter λ.

1: Perform RCA on data points X, obtain matrix V ∈
R

D×L for dimension reduction.

2: Calculate RCA-projected data X̃ = VTX ∈ R
L×N .

3: Initialize B ∈ {−1, 1}K×N by ITQ and M with ones on

the main diagonal and zeros elsewhere.

4: while not converge or iteration number < t do
5: W-Step: Update W using Eqn. (6)

6: B-Step: Update B row by row using Eqn. (9).

7: M-Step: Update M using Eqn. (10).

8: end while
Output: Bilinear measure matrix M ∈ R

L×K ; matrix V ∈
R

D×L; binary codes B ∈ {−1, 1}K×N .

3. EXPERIMENTS

3.1. Datasets and Evaluation protocol
We evaluate our approach on two commonly used image

datasets: CIFAR-10 and ESP-GAME. CIFAR-10 is a single-

label dataset containing 60,000 color images from 10 seman-

tic categories. ESP-GAME is a multi-label dataset consisting

of 20,768 images assigned with multiple labels from 268 cate-

gories. For both two datasets, the 512-dimensional GIST [27]

features are extract to represent these images. In addition,

the ground-truth is defined by semantic labels, namely two

images are similar if they share at least one label. To evaluate

the retrieval performance of our approach, mean average pre-

cision (MAP) and top-K precision are chosen as evaluation

protocol. Naturally, 1000 samples are selected for testing,

and the remaining samples for training models each time.

3.2. Compared Methods
To demonstrate the effectiveness of our proposed approach,

we compare MEAH against one data-independent method

LSH [5], and some representative unsupervised hashing

methods [28], including ITQ [6], SH [8], AGH [19] and

SGH [10]. In our experiments, two query strategies are em-

ployed for verifying the effectiveness of real-valued codes.

Specifically, we search database by (VTq)TMB. This real-

valued query strategy is denoted by MEAH. Additionally, we

can also perform query by sign ((VTq)TM))B. This binary

query strategy is denoted by MEAH-B.

3.3. Experimental settings and results
Unless otherwise specified, we empirically set the parameters

on both two datasets as follows. In (5), λ is taken as 0.5. The

maximum iteration number t is set to 10 and the reduced di-

mension L is set to 30 in (1). As for other compared hashing

methods, we set the parameters as the suggestions of the cor-

responding authors. All experiments are conducted on a PC

with 3.5 GHz CPU and 32 GB RAM. The results are reported

based on the average of 10 random runs.

The MAP performance of different hashing methods are

reported in Table 1. It can be obviously seen that MEAH

obtains the best performance on both two datasets, while

MEAH-B is superior to other binary hashing methods with

high bits (more than 32 bits) in terms of MAP . In comparison

with MEAH-B, MEAH shows better search accuracy. For ex-
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Fig. 1. The top-K precision of different numbers of top re-

turned images on (a) CIFRA-10 and (b) ESP-GMAE.
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Table 1. The MAP of different hashing methods are compared on two datasets. The best results are reported in boldface.

Method
CIFRA-10 ESP-GAME

32 bits 64 bits 96 bits 128 bits 32bits 64 bits 96 bits 128 bits

MEAH 0.3120 0.3494 0.3592 0.3630 0.3325 0.3385 0.3398 0.3404
MEAH-B 0.2614 0.3127 0.3302 0.3432 0.3108 0.3252 0.3313 0.3334

SGH 0.2669 0.2906 0.2997 0.3047 0.3125 0.3208 0.3243 0.3257

AGH 0.2941 0.3041 0.3083 0.3105 0.3055 0.3142 0.3168 0.3176

ITQ 0.2757 0.2940 0.3023 0.3082 0.3175 0.3233 0.3259 0.3278

SH 0.2232 0.2285 0.2264 0.2297 0.2912 0.2893 0.2914 0.2895

LSH 0.2077 0.2405 0.2548 0.2670 0.2927 0.3040 0.3115 0.3151

ample, MEAH outperforms MEAH-B by 11.74% and 4.09%

with 64 bits on CIFRA-10 and ESP-GMAE, respectively.

This observation indicates that utilizing the real-valued codes

rather than binary ones can obtain remarkable improvements.

Meanwhile, SGH yields favorable performance among the

compared methods. It should be also noted that the frame-

work of MEAH-B is similar to SGH. Benefited by asymmet-

ric scheme, our MEAH-B achieves better performance than

SGH. Compared to SGH with 64 bits, the MAP of MEAH is

clearly higher than SGH with a large margin (over 20.23%)

on CIFAR-10. Additionally, on ESP-GAME, ITQ is the

second best method which is slightly better than SGH, but

worse than MEAH. This shows that MEAH can also deal

with multi-label datasets and achieve the best performance.

Simultaneously, the top-K precision with 64 bits is illus-

trated in Figure 1. On CIFAR-10, MEAH surpass other meth-

ods with a obvious margin under different number of returned

images. While on ESP-GAME, the top-K precision of MEAH

is a little higher than other methods (also the best). Conse-

quently, experimental results demonstrate the best search per-

formance of MEAH in terms of MAP and top-K precision.
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Fig. 2. The effect of different RCA-reduced dimensions on

MAP performance on (a) CIFRA-10 and (b) ESP-GMAE.

To evaluate the effect of RCA-reduced dimensions, the

MAP performance of different values of L is shown in Fig-

ure 2. We can see that MAP is sensitive to the RCA dimension

reduction. Concretely, when L is small between 20 and 40,

MEAH remains a stably promising performance. However,

when L becomes smaller or larger, the performance of MEAH

degrades significantly. This observation is consistent with our

intention that moderately low-dimensional real-valued codes

convey sufficient information for representation. Hence, the

dimension of two datasets is reduced to 30 in MEAH.
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Fig. 3. The effect of λ on MAP performance on (a) CIFRA-10

and (b) ESP-GMAE.

Figure 3 illustrates the MAP of different parameter λs.

Clearly, the MAP of MEAH is not sensitive to λ when 0.1 <
λ < 1. While the performance becomes worse in the case of

λ � 1. The underlying reason is that MEAH mainly focus

on minimizing the fitting error, while the quantization error is

only a regularization term. Thus, the fitting error term should

be more critical than the quantization error term. For this

reason, we set the tradeoff parameter λ to 0.5 on two datasets.

4. CONCLUSION

In this paper, we have proposed a novel unsupervised asym-

metric hashing method named MEAH, which exploits an

asymmetric structure based on binary and real-valued codes.

Different from previous binary hashing methods which mea-

sure the similarity in Hamming space or Euclidean space,

MEAH learns a bilinear similarity function to directly mea-

sure the similarity between these asymmetric codes. The

learned bilinear similarity measure can bridge the gap be-

tween the binary and real-valued codes and also preserve the

global structure in the database. By leveraging the underly-

ing information of the real-valued codes, the more precise

similarity can be calculated in the query stage. Experimental

results show that MEAH achieves superior performance over

several state-of-the-art binary hashing methods.
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